多摩川精機株式会社

  1. arrow 日本語
  2. arrow English
  3. arrow サイトマップ
  4. arrow 本社ウェブサイト

参考文献

その他の論文

光アフィニティビーズ(1報)

  1. Y. Nishiya et al.
    A new efficient method of generating photoaffinity beads for drug target identification.
    Bioorg. Med. Chem. Lett., 27, 834 (2017).

    ▲ ページトップ

抗体固定化(5報)

  1. A. Kimura et al.
    N-Myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment?specific protein quality control system.
    Journal of Proteomics, 130, 33 (2016)

  2. S. Masaki et al.
    Identification of the Specific Interactors of the Human Lariat RNA Debranching Enzyme 1 Protein.
    Int. J. Mol. Sci., 16, 3705 (2015).

  3. M. Arita et al.
    Development of an efficient entire-capsid-coding-region amplification method for direct detection of poliovirus from stool extracts.
    J. Clin. Microbiol., 53, 73 (2015).

  4. K. Takahashi et al.
    Functional Analysis of Light-harvesting-like Protein 3 (LIL3) and Its Lightharvesting Chlorophyll-binding Motif in Arabidopsis.
    J. Biol. Chem., 289, 987 (2014).

  5. M. Oda et al.
    DNA Methylation Restricts Lineage-specific Functions of Transcription Factor Gata4 during Embryonic Stem Cell Differentiation.
    PLOS Genetics, 9, e1003574 (2013).

    ▲ ページトップ

ファージディスプレイ(3報)

  1. M. Taki et al.
    Selection of Color-Changing and Intensity-Increasing Fluorogenic Probe as Protein-Specific Indicator Obtained via the 10BASEd-T.
    Anal. Chem., 88, 1096 (2016).

  2. K. Fukunaga et al.
    Construction of a crown ether-like supramolecular library by conjugation of genetically-encoded peptide linkers displayed on bacteriophage T7.
    Chem. Commun., 50, 3921 (2014).

  3. Y. Tokunaga et al.
    Pharmacophore Generation from a Drug-like Core Molecule Surrounded by a Library Peptide via the 10BASEd-T on Bacteriophage T7.
    Molecules, 19, 2481 (2014).

    ▲ ページトップ

バイオマーカー(1報)

  1. M. Takeshita et al.
    Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis.
    Arthritis Research & Therapy, 18, 112 (2016).

    ▲ ページトップ

免疫蛍光染色(1報)

  1. H. Shirasawa et al.
    Novel method for immunofluorescence staining of mammalian eggs using noncontact alternating-current electric-field mixing of microdroplets.
    Scientific Reports, 5:15371 (2015).

    ▲ ページトップ

蛍光ビーズ(4報)

  1. J. Sharma et al.
    Fast and sensitive medical diagnostic protocol based on integrating circular current lines for magnetic washing and optical detection of fluorescent magnetic nanobeads.
    Sensing and Bio-Sensing Researc, 9, 7 (2016).

  2. K. Terada et al.
    Rapid and sensitive detection of alpha-fetoprotein by a magnetically promoted shake-free immunoassay employing fluorescent magnetic nanobeads.
    Int. J, Anal. Bio-Sci, 2:3 (2014).

  3. S. Sakamoto et al.
    Magnetically Promoted Rapid Immunoreactions Using Functionalized Fluorescent Magnetic Beads:A Proof of Principle.
    Clinical Chemistry, 60:4 (2014).

  4. M. Hatakeyama et al.
    Characterization of magnetic carrier encapsulating europium and ferrite nanoparticles for biomolecular recognition and imaging.
    J. Magn. Mag. Mater., 321, 1625 (2009).

    ▲ ページトップ

蛍光プローブの開発(1報)

  1. Y. Suzuki, A. Kuno, Y. Chiba.
    Development of fluorescent probes for “On-Off” switching baseddetection of lectin?saccharide interactions.
    Sens. Actuators B., 220, 389 (2015).

    ▲ ページトップ

ウィルス分離(1報)

  1. M.Arita.
    Development of poliovirus extraction method from the stool extracts by using magnetic nanoparticles sensitized with soluble poliovirus receptor.
    J. Clin. Microbiol. DOI:10.1128 (2013).

    ▲ ページトップ

ビーズ製造(1報)

  1. M. Abe et al.
    Preparation and medical application of magnetic beads conjugated with bioactive molecules.
    J. Magn. Mag. Mater., 321, 645 (2009).

    ▲ ページトップ

磁性粒子のサイズ制御(1報)

  1. K. Nishio et al.
    Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications.
    J. Magn. Mag. Mater., 310, 2408 (2007).

    ▲ ページトップ

ラテックスビーズの合成(1報)

  1. H. Kawaguchi et al.
    Preparation of amphoteric latex by modification of styrene-acrylamide copolymer latex.
    J. Appl. Polym. Sci., 26, 2015 (1981).

    ▲ ページトップ

スクリーニングシステムの紹介(1報)

  1. N. Hanyu et al.
    High-throughput bioscreeningsystem utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding.
    J. Magn. Mag. Mater., 321, 1364 (2009).

    ▲ ページトップ

タンパク質溶液の調製法(1報)

  1. J. Dignam et al.
    Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.
    Nucleic Acids Res., 11, 1475 (1983).

    ▲ ページトップ

ケミカルバイオロジー総論(4報)

  1. V. Gupta et al.
    Affinity Chromatographic Materials.
    Encyclopedia of Polymeric Nanomaterials, DOI:10.1007 (2014).

  2. M. Ueda.
    Chemical Biology of Natural Products on the Basis of Identification of Target Proteins.
    Chem. Lett., 41, 658 (2012).

  3. S. Sakamoto et al.
    Tools and methodologies capable of isolating and identifying a target molecule for a bioactive compound.
    Bioorg. Med. Chem., 20, 1990 (2012).

  4. S. Sakamoto et al.
    Development and Application of High-Performance Affinity Beads: Toward Chemical Biology and Drug Discovery.
    Chem. Rec., 9, 66 (2009).

    ▲ ページトップ

タンパク質限定分解法(3報)

  1. N. Iwamoto et al.
    Application of nano-surface and molecular-orientation limited proteolysis to LC?MS bioanalysis of cetuximab.
    Bioanalysis, 8, 1009 (2016).

  2. N. Iwamoto et al.
    Fully validated LCMS bioanalysis of Bevacizumab in human plasma using nano-surface and molecular-orientation limited (nSMOL) proteolysis.
    Drug Metab. Pharmacokinet., 31, 46 (2016).

  3. N. Iwamoto et al.
    Selective detection of complementaritydetermining regions of monoclonal antibody by limiting protease access to the substrate: nanosurface and molecular-orientation limited proteolysis.
    Analyst, 139, 576 (2014).

    ▲ ページトップ